25 research outputs found

    Directed Width Parameters and Circumference of Digraphs

    Full text link
    We prove that the directed treewidth, DAG-width and Kelly-width of a digraph are bounded above by its circumference plus one

    Directed Minors III. Directed Linked Decompositions

    Full text link
    Thomas proved that every undirected graph admits a linked tree decomposition of width equal to its treewidth. In this paper, we generalize Thomas's theorem to digraphs. We prove that every digraph G admits a linked directed path decomposition and a linked DAG decomposition of width equal to its directed pathwidth and DAG-width respectively

    Forbidden Directed Minors and Kelly-width

    Full text link
    Partial 1-trees are undirected graphs of treewidth at most one. Similarly, partial 1-DAGs are directed graphs of KellyWidth at most two. It is well-known that an undirected graph is a partial 1-tree if and only if it has no K_3 minor. In this paper, we generalize this characterization to partial 1-DAGs. We show that partial 1-DAGs are characterized by three forbidden directed minors, K_3, N_4 and M_5

    Realizable paths and the NL vs L problem

    Get PDF
    A celebrated theorem of Savitch [Savitch'70] states that NSPACE(S) is contained in DSPACE(S²). In particular, Savitch gave a deterministic algorithm to solve ST-Connectivity (an NL-complete problem) using O({log}²{n}) space, implying NL (non-deterministic logspace) is contained in DSPACE({log}²{n}). While Savitch's theorem itself has not been improved in the last four decades, several graph connectivity problems are shown to lie between L and NL, providing new insights into the space-bounded complexity classes. All the connectivity problems considered in the literature so far are essentially special cases of ST-Connectivity. In this dissertation, we initiate the study of auxiliary PDAs as graph connectivity problems and define sixteen different "graph realizability problems" and study their relationships. The complexity of these connectivity problems lie between L (logspace) and P (polynomial time). ST-Realizability, the most general graph realizability problem is P-complete. 1DSTREAL(poly), the most specific graph realizability problem is L-complete. As special cases of our graph realizability problems we define two natural problems, Balanced ST-Connectivity and Positive Balanced ST-Connectivity, that lie between L and NL. We study the space complexity of SGSLOGCFL, a graph realizability problem lying between L and LOGCFL. We define generalizations of graph squaring and transitive closure, present efficient parallel algorithms for SGSLOGCFL and use the techniques of Trifonov to show that SGSLOGCFL is contained in DSPACE(lognloglogn). This implies that Balanced ST-Connectivity is contained in DSPACE(lognloglogn). We conclude with several interesting new research directions.PhDCommittee Chair: Richard Lipton; Committee Member: Anna Gal; Committee Member: Maria-Florina Balcan; Committee Member: Merrick Furst; Committee Member: William Coo

    Graph Pricing Problem on Bounded Treewidth, Bounded Genus and k-partite graphs

    Full text link
    Consider the following problem. A seller has infinite copies of nn products represented by nodes in a graph. There are mm consumers, each has a budget and wants to buy two products. Consumers are represented by weighted edges. Given the prices of products, each consumer will buy both products she wants, at the given price, if she can afford to. Our objective is to help the seller price the products to maximize her profit. This problem is called {\em graph vertex pricing} ({\sf GVP}) problem and has resisted several recent attempts despite its current simple solution. This motivates the study of this problem on special classes of graphs. In this paper, we study this problem on a large class of graphs such as graphs with bounded treewidth, bounded genus and kk-partite graphs. We show that there exists an {\sf FPTAS} for {\sf GVP} on graphs with bounded treewidth. This result is also extended to an {\sf FPTAS} for the more general {\em single-minded pricing} problem. On bounded genus graphs we present a {\sf PTAS} and show that {\sf GVP} is {\sf NP}-hard even on planar graphs. We study the Sherali-Adams hierarchy applied to a natural Integer Program formulation that (1+ϵ)(1+\epsilon)-approximates the optimal solution of {\sf GVP}. Sherali-Adams hierarchy has gained much interest recently as a possible approach to develop new approximation algorithms. We show that, when the input graph has bounded treewidth or bounded genus, applying a constant number of rounds of Sherali-Adams hierarchy makes the integrality gap of this natural {\sf LP} arbitrarily small, thus giving a (1+ϵ)(1+\epsilon)-approximate solution to the original {\sf GVP} instance. On kk-partite graphs, we present a constant-factor approximation algorithm. We further improve the approximation factors for paths, cycles and graphs with degree at most three.Comment: Preprint of the paper to appear in Chicago Journal of Theoretical Computer Scienc
    corecore